A

CLOSED Loor PESIGN e

USB BF70x Bulk Library v.1.2 Users Guide

Users Guide Revision 1.2

For Use With Analog Devices ADSP-BF70x Series Processors

Closed Loop Design, LLC

748 S MEADOWS PKWY STE A-9-202
Reno, NV 89521
support@cld-llc.com

mailto:support@cld-llc.com

Table of Contents

DISCIAIMET ...t b b bbbt bt bbb e e et et b bbbt r e 3
INEFOTUCTION ...t bbbttt bbbt nn et 3
USB BACKGIOUN ...ttt b et b b b 3
CLD BF70x Bulk Library USB Enumeration FIOW Chart............cccccocviviieiiiiiiiie e 4
CLD BF70x Bulk Library Bulk OUT FIOW Chart..........cooiiiiieiiseee e e 6
CLD BF70x Bulk Library Bulk IN FIOW Chart...........ccccoiiiiiie e 7
DIEPENUEINCIES ...ttt b bbb b s bbb e bRt e et b Rt R s 8
MEMOIY FOOTPIINT ...t bbbt b bt b e et b bbb n e 8
CLD BF70x Bulk Library Scope and INteNded USEcccveiiiieiiiiiieeie ettt 8
CLD Bulk Loopback Example V1.2 DESCIIPLIONccviiriirreiieieieieieses st 8
CLD BF70X BUIK LIDIArY AP ...ttt st sttt e naesba et ene 9
ClA_DF70X_BUIK_TID_INIT. .ottt ettt 9
Cld_BF70X_BUIK 1D MAIN ..c.iiiiicc e e e et re e e ers 14
cld_bf70x_bulk_lib_transmit_Bulk_IN_data.........cccccveiieiiiieieri s 15
cld_bf70x_bulk_lib_resume_paused_bulk_out_transfercccceveiieiii i 16
(o8 o I 1T oS o T oo =T od SRS 17
(o8 o [1T oS o T o [Tt T T SR 17
(o8 o IO €1 0L (=] SRS 18
(o8 o [0 g LT o= XY= 0 RS 18
(o1 o [ofo] g 1T SRRSO 19
Using the ADSP-BF707 EZ-BOAITccccoeiiiiiieieeiesie st eiese s stesteesie e ste e saesteeseessesseesaesseesaesseans 21
(07040 T=Tox 1 o] 0 SO TSSO T TSP PSS TP PRUPPPRUPTPRPPPRTRN 21
Note about using UARTO and the FTDI USB to Serial CONVEIErccccovvveieiiiieiesieie e eiese e 21
Adding the CLD BF70x Bulk Library to an Existing CrossCore Embedded Studio Project 22
USING AD] NOSTAPP.EXE ...ttt ettt bbbttt bbbttt b bbb n e 24
ADI hostapp Windows USB Driver INStallation.............cocoiiiiiiiiiese s 25
User FIrmware COae SNIPPELSoiui ittt sttt st et be e e sr e st e e seesbesteesbesaeesrenteans 29
0T U1 TSP 29

0 EST=T g o101 o PR 30

Disclaimer

This software is supplied "AS IS" without any warranties, express, implied or statutory, including but not
limited to the implied warranties of fitness for purpose, satisfactory quality and non-infringement. Closed
Loop Design LLC extends you a royalty-free right to reproduce and distribute executable files created
using this software for use on Analog Devices Blackfin family processors only. Nothing else gives you
the right to use this software.

Introduction

The Closed Loop Design (CLD) Bulk library creates a simplified interface for developing a Bulk IN/Bulk
OUT USB 2.0 device using the Analog Devices ADSP-BF707 EZ-Board. The CLD BF70x Bulk library
also includes support for a serial console and timer functions that facilitate creating timed events quickly
and easily. The library's BF707 application interface is comprised of parameters used to customize the
library's functionality as well as callback functions used to notify the User application of events. These
parameters and functions are described in greater detail in the CLD BF70x Bulk Library API section of
this document.

USB Background

The following is a very basic overview of some of the USB concepts that are necessary to use the CLD
BF70x Bulk Library. However, it is still recommended that developers have at least a basic
understanding of the USB 2.0 protocol. The following are some resources to refer to when working with
USB:

e The USB 2.0 Specification: http://www.usbh.org/developers/docs/usb20_docs/

e USB in a Nutshell: A free online wiki that explains USB concepts.
http://www.beyondlogic.org/usbnutshell/usb1.shtml

e "USB Complete" by Jan Axelson ISBN: 1931448086

USB is a polling based protocol where the Host initiates all transfers, so all USB terminology is from the
Host's perspective. For example a 'IN' transfer is when data is sent from a Device to the Host, and an
'‘OUT" transfer is when the Host sends data to a Device.

The USB 2.0 protocol defines a basic framework that devices must implement in order to work correctly.
This framework is defined in the Chapter 9 of the USB 2.0 protocol, and is often referred to as the USB
'‘Chapter 9' functionality. Part of the Chapter 9 framework is standard USB requests that a USB Host uses
to control the Device. Another part of the Chapter 9 framework is the USB Descriptors. These USB
Descriptors are used to notify the Host of the Device's capabilities when the Device is attached. The USB
Host uses the descriptors and the Chapter 9 standard requests to configure the Device. This process is
called the USB Enumeration. The CLD BF70x Bulk Library includes support for the USB standard
requests and USB Enumeration using some of the parameters specified by the User application when
initializing the library. These parameters are discussed in the cld_bf70x_bulk_lib_init section of this
document. The CLD BF70x Bulk Library facilitates USB enumeration and is Chapter 9 compliant
without User Application intervention as shown in the flow chart below. If you'd like additional
information on USB Chapter 9 functionality or USB Enumeration please refer to one of the USB
resources listed above.

http://www.beyondlogic.org/usbnutshell/usb1.shtml

CLD BF70x Bulk Library USB Enumeration Flow Chart

‘ USB Cable Connected or USB Bus Reset ‘

— ,

‘ Get Device Descriptor Request ‘

USB/External Event ‘

USB Host Event ‘

Set USB Address

Get Device Descriptor Request

Get Configuration Descriptor Request

USB Enumeration

Set Configuration
(CLD Bulk Library has 1 configuration)

Request String Descriptors

All USB data is transferred using Endpoints that act as a source or sink for data based on the endpoint's
direction (IN or OUT). The USB protocol defines four types of Endpoints, each of which has unique
characteristics that dictate how they are used. The four Endpoint types are: Control, Interrupt, Bulk and
Isochronous. Data that is transmitted over USB is broken up into blocks of data called packets. For each
endpoint type there are restrictions on the allowed max packet size. The allowed max packet sizes also
vary based on the USB connection speed. Please refer to the USB 2.0 protocol for more information
about the max packet size supported by the four endpoint types.

The CLD BF70x Bulk Library uses Control and Bulk endpoints, these endpoint types will be discussed in
more detail below.

A Control Endpoint is the only bi-directional endpoint type, and is typically used for command and status
transfers. A Control Endpoint transfer is made up of three stages (Setup Stage, Data Stage and Status
Stage). The Setup Stage sets the direction and size of the optional Data Stage. The Data Stage is where
any data is transferred between the Host and Device. The Status Stage gives the Device the opportunity to
report if an error was detected during the transfer. All USB Devices are required to include a default
Control Endpoint at endpoint number 0, referred to as Endpoint 0. Endpoint 0 is used to implement all
the USB Protocol defined Chapter 9 framework and USB Enumeration. In the CLD BF70x Bulk Library
Endpoint 0 is only used for USB Chapter 9 requests, which are handled by the CLD BF70x Bulk library,
thus Endpoint 0 is not accessible by the User application.

Bulk Endpoints are used to transfer large amounts of data where data integrity is critical, but does not
require deterministic timing. A characteristic of Bulk Endpoints is that they can fill USB bandwidth that
isn't used by the other endpoint types. This makes Bulk the lowest priority endpoint type, but it can also
be the fastest as long as the other endpoints don't saturate the USB Bus. An example of a devices that
uses Bulk endpoints is a Mass Storage Device (thumb drives). The CLD BF70x Bulk Library includes a
Bulk IN and Bulk OUT endpoint, which are used to send and receive data with the USB Host,
respectively.

The flow charts below give an overview of how the CLD BF70x Bulk Library and the User firmware
interact to process Bulk OUT and Bulk IN transfers. Additionally, the User firmware code snippets
included at the end of this document provide a basic framework for implementing a Bulk IN/Bulk Out
device using the CLD BF70x Bulk Library.

CLD BF70x Bulk Library Bulk OUT Flow Chart

USB Host Event

Bulk OUT packet

CLD BF70x Bulk Library Bulk IN Flow Chart

Wait for the USB Host to issue a USB IN Token on the Bulk
IN endpoint

Bulk IN token

—

USB Host Event

Dependencies
In order to function properly the CLD BF70x Bulk Library requires the following Blackfin resources:

e One Blackfin General Purpose Timer.

o 24Mhz clock input connected to the Blackfin USBO_CLKIN pin.

e Optionally the CLD BF70x Bulk Library can use one of the Blackfin UARTS to implement a
serial console interface.

e The User firmware is responsible for setting up the Blackfin clocks, as well as enabling the
Blackfin's System Event Controller (SEC) and configuring SEC Core Interface (SCI) interrupts to
be sent to the Blackfin core.

Memory Footprint
The CLD BF70x Bulk Library approximate memory footprint is as follows:

Code memory: 23708 bytes

Data memory: 5060 bytes

Total: 28768 bytes or 28.09k

Heap memory: 1152 bytes (only malloc'ed if optional cld_console is enabled)

Note: The CLD BF70x Bulk Library is currently optimized for speed (not space).

CLD BF70x Bulk Library Scope and Intended Use

The CLD BF70x Bulk Library implements a Vendor Specific Bulk IN/Bulk OUT USB device, as well as
providing time measurements and optional bi-directional UART console functionality. The CLD BF70x
Bulk Library is designed to be added to an existing User project, and as such only includes the
functionality needed to implement the above mentioned USB, timer and UART console features. All
other aspects of Blackfin processor configuration must be implemented by the User code.

CLD Bulk Loopback Example v1.2 Description

The CLD_Bulk_loopback_example_v1_2 project provided with the CLD BF70x Bulk Library
implements the Analog Devices (ADI) vendor specific Bulk IN/Bulk OUT protocol used by the ADI
hostapp.exe program included with CrossCore Embedded Studio. This example is not indented to be a
used as a complete stand alone project. Instead, this project only includes the User functionality required
to interface with hostapp.exe, and it is up to the User to include their own custom system initialization
and any extra functionality they require.

For information about running the ADI hostapp program please refer to the "Using ADI hostapp.exe"
section of this Users Guide.

CLD BF70x Bulk Library API

The following CLD library API descriptions include callback functions that are called by the library
based on USB events. The following color code is used to identify if the callback function is called from
the USB interrupt service routine, or from mainline. The callback functions called from the USB
interrupt service routine are also italicized so they can be identified when printed in black and white.

Callback called from the mainline context

Callback called from the USB interrupt service routine

cld_bf70x_bulk_lib_init

CLD RV cld_bf70x_bulk_lib_init (CLD_BF70x_Bulk Lib Init Params *
cld bulk lib params)

Initialize the CLD BF70x Bulk Library.

Arguments

cld_bulk_lib_params Pointer to a CLD_BF70x_Bulk_Lib_Init_Params
structure that has been initialized with the User
Application specific data.

Return Value
This function returns the CLD_RV type which represents the status of the CLD BF70x Bulk initialization
process. The CLD_RV type has the following values:

CLD_ SUCCESS The library was initialized successfully
CLD FAIL There was a problem initializing the library
CLD ONGOING The library initialization is being processed
Details

The cld_bf70x_bulk_lib_init function is called as part of the device initialization and must be repeatedly
called until the function returns CLD_SUCCESS or CLD_FAIL. If CLD_FAIL is returned the library
will output an error message identifying the cause of the failure using the cld_console UART if enabled
by the User application. Once the library has been initialized successfully the main program loop can
start.

The CLD_BF70x_Bulk_Lib_Init_Params structure is described below:

typedef struct

{
CLD Timer Num timer num;
CLD Uart Num uart num;
unsigned long uart baud;
unsigned long sclkO;

void (*fp console rx byte) (unsigned char byte);

unsigned short vendor id;
unsigned short product id;

CLD Bulk Endpoint Params * p bulk in endpoint params;

CLD Bulk Endpoint Params * p bulk out endpoint params;

CLD USB Transfer Request Return Type (*fp bulk out data received)

(CLD_USB Transfer Params * p transfer data);

unsigned char usb bus max power;

unsigned short device descriptor bcdDevice;

const
const
const
const
const

char
char
char
char
char

*
*
*
*
*

p_usb string manufacturer;
p_usb string product;

p_usb string serial number;
p_usb string configuration;
p_usb string interface;

unsigned short usb string language id;

void (*fp cld usb event callback) (CLD USB Event event);
} CLD BF70x Bulk Lib Init Params;

A description of the CLD_BF70x_Bulk_Lib_Init_Params structure elements is included below:

Structure Element

Description

timer_num

Identifies which of the ADSP-BF707 timers should be used by the
CLD BF70x Bulk Library. The valid timer_num values are listed
below:

CLD TIMER 0
CLD TIMER 1
CLD TIMER 2
CLD TIMER 3
CLD TIMER 4
CLD TIMER 5
CLD TIMER 6
CLD TIMER 7

Any other timer_num values will result in the
cld bf70x_bulk_lib_init function returning CLD_FAIL.

uart_num

Identifies which of the ADSP-BF707 UARTS should be used by the
CLD BF70x Bulk Library to implement the cld_console (refer to
the cld_console API description for additional information). The
valid uart_num values are listed below:

CLD UART 0
CLD UART 1
CLD UART DISABLE

If uart_num is set to CLD_UART _ DISABLE the CLD BF70x
Bulk Library will not use a UART, and the cld_console

10

functionality is disabled.

uart_baud

Sets the desired UART baud rate used for the cld_console.
The remaining cld_console UART parameters are as follows:

Number of data bits: 8
Number of stop bits: 1

No Parity

No Hardware Flow Control

sclk0

Used to tell the CLD BF70x Bulk Library the frequency of the
ADSP_BF707 SCLKO clock.

fp_console_rx_byte

Pointer to the function that is called when a byte is received by the
cld_console UART. This function has a single parameter (‘byte")
which is the value received by the UART.

Note: Set to NULL if not required by application

vendor _id The 16-bit USB vendor ID that is returned to the USB Host in the
USB Device Descriptor.
USB Vendor ID's are assigned by the USB-IF and can be purchased
through their website (www.usb.org).

product _id The 16-bit product ID that is returned to the USB Host in the USB

Device Descriptor.

p_bulk_in_endpoint_params

Pointer to a CLD_Bulk_Endpoint_Params structure that describes
how the Bulk IN endpoint should be configured. The
CLD_Bulk_Endpoint_Params structure contains the following
elements:

Structure Element
endpoint_num

Description

Sets the USB endpoint number
of the Bulk endpoint. The
endpoint number must be
within the following range:

1 <endpoint num < 12. Any
other endpoint number will
result in the
cld_bf70x_bulk_lib_init
function returning CLD_FAIL
Sets the Bulk endpoint's max
packet size when operating at
Full Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8, 16, 32, and 64 bytes.

Sets the Bulk endpoint's max
packet size when operating at
High Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8, 16, 32, 64 and 512 bytes.

max_packet_size_full_speed

max_packet_size high_speed

p_bulk_out_endpoint_params

Pointer to a CLD_Bulk_Endpoint_Params structure that describes
how the Bulk Out endpoint should be configured. Refer to the
p_bulk_in_endpoint_params description for information about the

CLD_Bulk_Endpoint_Params structure.

fp_bulk_out_data_received

Pointer to the function that is called when the Bulk OUT endpoint
receives data. This function takes a pointer to the
CLD_USB_Transfer_Params structure ('p_transfer_data’)as a
parameter.

The following CLD_USB_Transfer_Params structure elements are
used to processed a Bulk OUT transfer:

Structure Element Description

num_bytes The number of bytes to
transfer to the p_data_buffer
before calling the
usb_out_transfer_complete
callback function.

When the

bulk_out data_received
function is called num_bytes
is set the number of bytes in
the current Bulk OUT packet.
If the Bulk OUT total transfer
size is known num_bytes can
be set to the transfer size, and
the CLD BF70x Bulk Library
will complete the entire bulk
transfer without calling
bulk_out_data_received again.
If num_bytes isn't modified
the bulk _out_data_received
function will be called for
each Bulk OUT packet.

p_data_buffer Pointer to the data buffer to
store the received Bulk OUT
data. The size of the buffer
should be greater than or
equal to the value in
num_bytes.

fp_usb_out_transfer_compelete | Function called when
num_bytes of data has been
transferred to the
p_data_buffer memory.

fp_transfer_aborted_callback Function called if there is a
problem transferring the
requested Bulk OUT data.

transfer_timeout_ms Bulk OUT transfer timeout in
milliseconds. If the Bulk out
transfer takes longer then this
timeout the transfer is aborted
and the

transfer_aborted_callback is
called.

Setting the timeout to 0
disables the timeout

The fp_bulk_out_data_received function returns the
CLD_USB_Transfer_Request_Return_Type, which has the
following values:

Return Value Description

CLD_USB_TRANSFER_ACCEPT Notifies the CLD BF70x Bulk

Library that the Bulk OUT
data should be accepted using
the p_transfer_data values.

CLD_USB_TRANSFER_PAUSE Requests that the CLD BF70x
Bulk Library pause the current
transfer. This causes the Bulk
OUT endpoint to be nak'ed
until the transfer is resumed by
calling
cld_bf70x_bulk_lib_resume_

paused_bulk_out_transfer.

CLD_USB_TRANSFER_DISCARD | Requests that the CLD BF70x
Bulk Library discard the
number f bytes specified in
p_transfer_params->
num_bytes. In this case the
library accepts the Bulk OUT
data from the USB Host but
discards the data. This is
similar to the concepts of
frame dropping in audio/video
applications.

CLD_USB_TRANSFER_STALL This notifies the CLD BF70x

Bulk Library that there is an
error and the Bulk OUT
endpoint should be stalled.

usb_bus_max_power

USB Configuration Descriptor bMaxPower value (0 = self
powered). Refer to the USB 2.0 protocol section 9.6.3.

device_descriptor_bcd_device

USB Device Descriptor bcdDevice value.
Refer to the USB 2.0 protocol section 9.6.1.

p_usb_string_manufacturer

Pointer to the null-terminated string. This string is used by the CLD
BF70x Bulk Library to generate the Manufacturer USB String
Descriptor. If the Manufacturer String Descriptor is not used set
p_usb_string_manufacturer to NULL.

p_usb_string_product

Pointer to the null-terminated string. This string is used by the CLD
BF70x Bulk Library to generate the Product USB String Descriptor.
If the Product String Descriptor is not used set
p_usb_string_product to NULL.

p_usb_string_serial_number

Pointer to the null-terminated string. This string is used by the CLD
BF70x Bulk Library to generate the Serial Number USB String

Descriptor. If the Serial Number String Descriptor is not used set
p_ush_string_serial_nhumber to NULL.

p_usb_string_configuration

Pointer to the null-terminated string. This string is used by the CLD
BF70x Bulk Library to generate the Configuration USB String
Descriptor. If the Configuration String Descriptor is not used set
p_usb_string_configuration to NULL.

p_usb_string_interface

Pointer to the null-terminated string. This string is used by the CLD
BF70x Bulk Library to generate the Interface 0 USB String
Descriptor. If the Product String Descriptor is not used set
p_usb_string_interface to NULL.

usb_string_language_id

16-bit USB String Descriptor Language ID Code as defined in the
USB Language Identifiers (LANGIDs) document
(www.usb.org/developers/docs/USB_LANGIDs.pdf).

0x0409 = English (United States)

fp_cld_usb_event_callback

Function that is called when one of the following USB events
occurs. This function has a single CLD_USB_Event parameter.

Note: This callback can be called from the USB interrupt or
mainline context depending on which USB event was detected. The
CLD_USB_Event values in the table below are highlighted to show
the context the callback is called for each event.

The CLD_USB_Event has the following values:

Return Value Description
CLD_USB_CABLE_CONNECTED USB Cable Connected.
CLD_USB_CABLE_DISCONNECTED USB Cable

Disconnected
CLD_USB_ENUMERATED_CONFIGURED | USB device enumerated

(USB Configuration set
to a non-zero value)

CLD_USB_UN_CONFIGURED USB Configuration set
to0
CLD_USB_BUS_RESET USB Bus reset received

Note: Set to CLD_NULL if not required by application

cld_bf70x_bulk_lib_main

void cld bf70x bulk 1lib main (void)

CLD BF70x Bulk Library mainline function

Arguments
None

Return Value
None.

Details
The cld_bf70x_bulk_lib_main function is the CLD BF70x Bulk Library mainline function that must be
called in every iteration of the main program loop in order for the library to function properly.

cld_bf70x_bulk_lib_transmit_bulk_in_data

CLD USB Data Transmit Return Type cld bf70x bulk lib transmit bulk in data
(CLD_USB _Transfer Params * p transfer data)

CLD BF70x Bulk Library function used to send data over the Bulk IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_Transfer_Params structure
used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Bulk IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT_ SUCCESSFUL The library has started the requested Bulk IN
transfer.
CLD_USB_TRANSMIT_FAILED The library failed to start the requested Bulk IN

transfer. This will happen if the Bulk IN endpoint is
busy, or if the p_transfer_data-> data_buffer is set
to NULL

Details
The cld_bf70x_bulk_lib_transmit_bulk_in_data function transmits the data specified by the
p_transfer_data parameter to the USB Host using the Device's Bulk IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct
{
unsigned long num bytes;
unsigned char * p data buffer;
union
{
CLD USB Data Received Return Type (*fp usb out transfer complete) (void);
void (*fp usb in transfer complete) (void);
}callback;
void (*fp transfer aborted callback) (wvoid);
CLD Time transfer timeout ms;
} CLD_USB Transfer Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transfer to the USB Host. Once the
specified number of bytes have been transmitted the

15

usb_in_transfer_complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must
include the number of bytes specified by num_bytes.

fp_usb_out_transfer_complete Not Used for Bulk IN transfers

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the

USB host. This function pointer can be set to NULL if the User
application doesn't want to be notified when the data has been
transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the
USB Host. This function can be set to NULL if the User
application doesn't want to be notified if a problem occurs.

transfer_timeout_ms Bulk OUT transfer timeout in milliseconds. If the Bulk out transfer
takes longer then this timeout the transfer is aborted and the
fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer

void cld bf70x bulk lib resume paused bulk out transfer (void)

CLD BF70x Bulk Library function used to resume a paused Bulk OUT transfer.

Arguments
None

Return Value
None.

Details

The cld_bf70x_bulk_lib_resume_paused_bulk _out_transfer function is used to resume a Bulk OUT
transfer that was paused by the fp bulk out data received function returning
CLD_USB_TRANSFER_PAUSE. When called the
cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer function will call the User application's

fp bulk out data received function passing the CLD_USB_Transfer_Params of the original
paused transfer. The fp bulk out data received function can then chose to accept, discard, or stall
the bulk out request.

cld_lib_usb_connect

void cld 1lib usb connect (void)

CLD BF70x Bulk Library function used to connect to the USB Host.

Arguments
None

Return Value
None.

Details
The cld_lib_usb_connect function is called after the CLD BF70x Bulk Library has been initialized to
connect the USB device to the Host.

cld_lib_usb_disconnect

void cld_lib usb_disconnect (void)

CLD BF70x Bulk Library function used to disconnect from the USB Host.

Arguments
None

Return Value
None.

Details
The cld_lib_usb_disconnect function is called after the CLD BF70x Bulk Library has been initialized to
disconnect the USB device to the Host.

17

cld_time_get
CLD Time cld_time get (void)
CLD BF70x Bulk Library function used to get the current CLD time.

Arguments
None

Return Value
The current CLD library time.

Details
The cld_time_get function is used in conjunction with the cld_time_passed_ms function to measure how
much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

cld_time_passed_ms
CLD Time cld_time passed ms(CLD Time time)
CLD BF70x Bulk Library function used to measure the amount of time that has passed.

Arguments

time A CLD_Time value returned by a cld_time_get
function call.

Return Value
The number of milliseconds that have passed since the cld_time_get function call that returned the
CLD_Time value passed to the cld_time_passed_ms function.

Details
The cld_time_passed_ms function is used in conjunction with the cld_time_get function to measure how
much time has passed between the cld_time_get and the cld_time_passed_ms function calls.

18

cld_console

CLD RV cld_console (CLD CONSOLE COLOR foreground color, CLD CONSOLE COLOR
background color, const char *fmt, ...)

CLD Library function that outputs a User defined message using the UART specified in the
CLD_BF70x_Bulk_Lib_Init_Params structure.

Arguments

foreground color The CLD_CONSOLE_COLOR used for the
console text.

CLD CONSOLE_BLACK
CLD CONSOLE_RED
CLD_CONSOLE_GREEN
CLD_CONSOLE_YELLOW
CLD_CONSOLE_BLUE
CLD CONSOLE_PURPLE
CLD_CONSOLE_CYAN
CLD CONSOLE WHITE

background color The CLD_CONSOLE_COLOR used for the
console background.

CLD CONSOLE_BLACK
CLD CONSOLE_RED
CLD CONSOLE_GREEN
CLD_CONSOLE_YELLOW
CLD_CONSOLE_BLUE
CLD CONSOLE_PURPLE
CLD_CONSOLE_CYAN
CLD CONSOLE WHITE

The foreground and background colors allow the

User to generate various color combinations like
the ones shown below:

Green texXt wWith a Wnite background

white text with a Green background

fmt The User defined ASCII message that uses the

same format specifies as the printf function.

Optional list of additional arguments

19

Return Value

This function returns whether or not the specified message has been added to the cld_console transmit

buffer.

CLD_SUCCESS The message was added successfully.

CLD_FAIL The message was not added, so the message will
not be transmitted. This will occur if the CLD
Console is disabled, or if the message will not fit
into the transmit buffer.

Details

cld_console is similar in format to printf, and also natively supports setting a foreground and background

color.

The following will output The quick brown fox' on a black background with green text:

cld console(CLD CONSOLE GREEN, CLD CONSOLE BLACK, "The quick brown $%s\n\r", "fox");

20

Using the ADSP-BF707 Ez-Board

Connections:

USB-to-Serial port connected to
Blackfin UARTO.

UARTO can be used for the CLD
Bulk Libary Console port.

Blackfin USBO
CLD Bulk Libr:

Note about using UARTO and the FTDI USB to Serial Converter

On the ADSP-BF707 Ez-Board the Blackfin's UARTO serial port is connected to a FTDI FT232RQ USB-
to-Serial converter. By default the UART 0 signals are connected to the FTDI chip. However, the demo
program shipped on the Ez-Board disables the UARTO to FTDI connection. If the FTDI converter is used
for the CLD BF70x Bulk Library console change the boot selection switch (located next to the power
connector) so the demo program doesn't boot. Once this is done the FTDI USB-to-Serial converter can be
used with the CLD BF70x Bulk Library console connected to UARTO.

21

Adding the CLD BF70x Bulk Library to an Existing CrossCore Embedded

Studio Project

In order to include the CLD BF70x Bulk Library in a CrossCore Embedded Studio (CCES) project you
must configure the project linker settings so it can locate the library. The following steps outline how this
is done.

1. Copy the cld_bf70x_bulk_lib.h and cld_bf70x_bulk_lib.dlb files to the project's src directory.
2. Open the project in CrossCore Embedded Studio.
3. Right click the project in the 'C/C++ Projects' window and select Properties.

If you cannot find the 'C/C++ Projects" window make sure C/C++ Perspective is active. If the
C/C++ Perspective is active and you still cannot locate the 'C/C++ Projects' window select
Window — Show View — C/C++ Projects.

4. You should now see a project properties window similar to the one shown below.

Navigate to the C/C++ Build — Settings page and select the CrossCore Blackfin Linker General
page. The CLD BF70x Bulk Library needs to be included in the project's 'Additional libraries
and object files' as shown in the diagram below (circled in blue). This lets the linker know where
the cld_bf70x_bulk_lib.dlb file is located.

E\ Properties for CLD_Bulk_loopback Ex vl 1 Tl B BE | | | s - - [E=EER=
type filter text Settings b v v
Resource
Builders BY
C/C++ Build Configuration: [[All configurations | 'I |'Maﬂage Configurations...

Build Variables

Discovery Options
Environment i Tool Settings ‘ ¥ Processor SEttmgsI 4 Build Steps | Build Artifactl Binary Parsers | @ Emor Parsers|
Logging

Settings 4 B CrossCore Blackfin Assembler Custom LDF (-T) "SProjDirPathl/src/app.Idf" o

Warnings (2 General .
C/C++ General (5 Preprocessor [~] Generate object trace (-t) .

Project References (% Additional Options [Z strip debug information (-5)

Run/Debug Settings 4 1% CrossCore Blackfin C/C++ Compiler | [Z] Strip all symbals (-5)

@ General [Warn once on undefined symbol (-warnonce)
(22 Preprocessor

H i
% k:;i:a?:e Settings [] Generate symbol map (-map) I
= -

(% Run-time Checks [T Generate xref (-xref)
(% Profile-guided Optimization [save temporary files (-save-temps)
@ Warning M| Individually map functions and data iterns (-ip)

[7] Runtime initialization (-mem)

m

By
g i:j;i;::;‘ Options Library search directories (-L) 888

4 1) CrossCore Blackfin Linker
@ General
(% Preprocessor
@ Elimination
(2 Processor
(2 Libraries
(22 Additional Options

Llibcarice and ohiact filac R

"${ProjDirPathy/src/cld_bfI0x_bulk_lib.dib”

Custom LDF (-T) -

Directs the linker where it can find the custom linker definition file

[Restora Defaults] [Apply] |

® [oK] [Cancel] W

22

5. The 'Additional libraries and object files' setting needs to be set for all configurations (Debug,
Release, etc). This can be done individually for each configuration, or all at once by selecting the
[All Configurations] option as shown in the previous figure (circled in orange).

Using ADI hostapp.exe
Analog Devices includes the hostapp application as part of the CrossCore Embedded Studio (CCES), and
is located in the following directory (assuming the CCES default installation directory was used):

C:\Analog Devices\CrossCore Embedded Studio 1.1.0\Blackfin\Examples\demo\hostapp

To launch hostapp navigate to the above directory using the Windows DOS console (type cmd.exe in the
Windows Run dialog box). Once there type hostapp.exe and press Enter to see a list of supported
command switches as shown in the screen show below.

Bl C\Windows\system32\cmd.exe |i£|é]

>hostapp.exe

Please enter a valid switch. see usage below.

s START COUNT UALUE ! —u !

display auto—detected devices and their device numbers
run custom loopback with SIZE byte transfers LOOP times
dump COUNT bhytes of memory at START address

download FILE from host to device at START address
display usage

run maximum size loophack test

run random size loophack test

set COUNT hytes of memory at START address with UALUE
seprvice I0Q requests from device

display firmware version information

—_
—s START COUNT VALUE
-u

Mote: If multiple devices are connected you can add a device number to the
switch in order to access a particular device, otherwise the default is 8.

C:~Analog Devices“CrossCore Embedded Studio 1.1.8“Blackfin“Examplessdemo~hostapp

e

Note: The CLD Bulk Loopback Example supports all of the above command switches except for the '-u’
switch.

Before going further connect the ADSP-BF707 EZ-Board running the CLD Bulk Loopback Example and
try running 'hostapp -a' to display the detected USB devices that support hostapp. If everything is
working correctly you should see the following:

(

BN C\Windows\system32\cmd.exe

C:“Analog Devices“CrossCore Embedded Studio 1.1.8“Blackfin“Examples:sdemo“~hostapp
Yhostapp.exe —a

Total 1 Blackfin USE Device found

Device @: WIMUSE Blackfin USB Device

C:~Analog Devices>CrossCore Embedded Studic 1.1.8%BlackfinsExamplessdemo~hostapp

L A

However, if hostapp.exe outputs "Total 0 Blackfin USB Device found™ it means that hostapp was not able
to detect a hostapp compatible device. If this occurs first check to make sure the CLD Bulk Loop Back
Example is running on the ADSP-BF707 EZ-Board, and that you have a USB connected between the
USBO port and one of you PC USB ports. If this doesn't correct the problem the next step is to install the
ADI hostapp USB driver as shown in the 'ADI hostapp USB Windows Driver Installation' section of this
document.

Once the USB driver has been installed you should be ready to run the remaining hostapp command
switches (type hostapp.exe or hostapp -h to see the list of supported command switches).

ADI hostapp Windows USB Driver Installation

To install the ADI hostapp Windows USB driver open the Windows Device Manager by running
"devmgmt.msc" from the Windows run dialog box. You should see a Device Manager windows similar
to the one below.

ijﬂeﬂc& Manager LllL
File Action View Help
&= | 5| it

4 = office
>-- Bluetooth Radios
1M Computer

-&F CrossCore Tools

g Disk drives

‘A Display adapters

) DVD/CD-ROM drives

- i Ellisys protocol analyzers

£ Human Interface Devices

g IDE ATA/ATAPI contrellers

%5 Imaging devices

& Keyboards

--E! Mice and other pointing devices
A Monitors

> -%F Network adapters

4 |3 Other devices

{[_i-[ln BF707 Bulk Loopback Device |
- T3 Ports (COM & LPT)

b n Processors

> % Sound, video and game controllers

VW W W VT T W W W W W W w0

oyl System devices
s - E Universal Serial Bus controllers
. WSD Print Provider

—— = =

Notice the 'BF707 Bulk Loopback Device' circled in blue. This is the BF707 running the CLD Bulk
Loopback Example that is missing the ADI hostapp USB driver. To install the USB driver right click the
'‘BF707 Bulk Loopback Device' device and select Update Driver Software. You should now see the
Update Driver Software dialog box shown below.

'\\:," Il Update Driver Software - BF707 Bulk Loopback Device

How do you want to search for driver software?

i & Search automatically for updated driver software :

: Windows will search your computer and the Internet for the latest driver software |
for your device, unless you've disabled this feature in your device installation :
settings.

i < Browse my computer for driver software
Locate and install driver software manually.

Cancel

b

Click 'Browse my computer for driver software'

You should now see the following dialog box:

r)

@ L Update Driver Software - BF707 Bulk Loopback Device

Browse for driver software on your computer

Search for driver software in this lecation:

og Devices\CrossCore Embedded Studio 1.1.0\Setup\Demo_Drivey ~ Browse...

[¥] Include subfolders

2 Let me pick from a list of device drivers on my computer
This list will show installed driver software compatible with the device, and all driver
software in the same category as the device.

[Mext] Cancel l

|

Click 'Browse..." and navigate to the directory containing the ADI hostapp USB driver shown below and
click ok.
C:\Analog Devices\CrossCore Embedded Studio 1.1.0\Setup\Demo_Driver

Click 'Next'

After clicking next you might see a Windows Security dialog box like the one shown below. If you do,
click 'Install' to continue the driver installation.

[+7] Windows Security ﬁ

Would you like to install this device software?

-~ Mame: Analog Devices Inc. ADI Development Tool...
_&' Publisher: Analog Devices Incorporated

| Always trust software from "Analog Devices Install][Dan't Install
Incorporated”.

';jj:' You should only install driver software from publishers you trust. How can I decide which
device software is safe to install?

You should now see the following dialog box showing that the ADI USB driver was installed
successfully. Click 'Close' to exit the Update Driver Software wizard.
i N

o Update Driver Software - ADI Vendor Specific USB Device

Windows has successfully updated your driver software
Windows has finished installing the driver software for this device:

.L-I ADIVendor Specific USB Device
-

e

You should now be able to run hostapp-a and see that hostapp is now successfully detecting the BF707
running the CLD Bulk Loopback Example project.

28

User Firmware Code Snippets

The following code snippets are not complete, and are meant to be a starting point for the User firmware.

For a functional User firmware example that uses the CLD BF70x Bulk Library please refer to the
CLD_Bulk_loopback Ex vl 1 project included with the CLD BF70x Bulk Library. The
CLD_Bulk_loopback_Ex_v1 1 project implements a Bulk IN/Bulk OUT device used by the Analog
Devices hostapp.exe included with the Analog Devices CrossCore Embedded Studio.

main.c

void main (void)
{
Main States main state = MAIN STATE SYSTEM INIT;

while (1)
{
switch (main state)
{
case MAIN STATE SYSTEM INIT:
/* Enable and Configure the SEC. */

/* sec_gctl - unlock the global lock */
pADI_SECO—>GCTL &= ~BITM SEC GCTL LOCK;

/* sec_gctl - enable the SEC in */
pADI_SECO->GCTL |= BITM SEC GCTL EN;

/* sec_cctl[n] - unlock */
pADI_SECO—>CB.CCTL &= ~BITM SEC CCTL LOCK;
/* sec_cctl[n] - reset sci to default x/
pADI_SECO—>CB.CCTL |= BITM SEC CCTL RESET;
/* sec_cctl[n] - enable interrupt to be sent to core */
pADI_SECO—>CB.CCTL = BITM SEC CCTL_EN;
pADI_PORTA—>DIR_SET = (3 << 0);

pPADI PORTB->DIR SET = (1 << 1);

main_ state = MAIN STATE USER INIT;
break;
case MAIN STATE USER INIT:
rv = user_bulk_init();
if (rv == USER BULK INIT SUCCESS)
{
main_state = MAIN STATE RUN;
}
else if (rv == USER BULK INIT FAILED)
{
main state = MAIN STATE ERROR;
}

break;

case MAIN STATE RUN:
user_bulk main();

break;

case MAIN STATE ERROR:

break;

29

user_bulk.c

/* Bulk IN endpoint parameters *
static CLD Bulk Endpoint Params
{
.endpoint number
.max_packet size full speed

/

user bulk in endpoint params =

.max_packet size high speed =

i

/* Bulk OUT endpoint parameters
static CLD Bulk Endpoint Params
{
.endpoint number
.max_packet size full speed

*

1,
64,
512,

/

user bulk out endpoint params =

.max_packet size high speed =

i

1,
64,
512,

/* cld bf70x bulk 1ib library initialization data. */
static CLD BF70x Bulk Lib Init Params user bulk init params =

{

.timer num
.uart num
.uart baud

115200,

CLD_TIMER 0,
CLD UART 0,

.sclk0 = 100000000y,
.fp console rx byte = user bulk console rx byte,

.vendor id = 0x064b,
.product_id 0x7823

.p_bulk in endpoint params =

.p_bulk out endpoint params

&user bulk in endpoint params,

&user bulk out endpoint params,

.fp bulk out data received = user bulk bulk out data received,

.usb bus max power = 0,
.device descriptor bcdDevice

/* USB string descriptors -
.p_usb_string manufacturer
.p_usb string product
.p_usb_string serial number
.p_usb string configuration
.p_usb_string interface

.usb_string language id

.fp cld usb event callback
b

= 0x0100

Set to CLD NULL if not required */

"Analog Devices Inc",

"BF707 Bulk Loopback Device",

CLD_NULL,
CLD_NULL,

"BF707 Bulk Loopback Demo",

0x0409,

user bulk usb event,

User Bulk Init Return Code user_bulk init (void)

{

static unsigned char user init state = 0;

CLD RV cld rv = CLD ONGOING;

/* English (US) language ID */

User Bulk Init Return Code init return code = USER _BULK_ INIT ONGOING;

switch (user init state)

{

case 0:

/* TODO: add any custom User firmware initialization */

30

user init state++;
break;
case 1:
/* Initalize the CLD BF70x Bulk Library */
cld rv = cld bf70x bulk 1lib init(&user bulk init params);

if (cld rv == CLD SUCCESS)

{
/* Connect to the USB Host */
cld 1ib_usb_connect() ;

init return code = USER BULK INIT SUCCESS;
}
else if (cld rv == CLD FAIL)
{
init return code = USER BULK INIT FAILED;
}
else
{
init return code = USER BULK INIT ONGOING;
}
}
return init return code;

}

void user_bulk main (void)
{
cld bf70x_bulk lib main();

}

/* Function called when a bulk out packet is received */
static CLD USB Transfer Request Return Type
user_bulk bulk out_data_ received (CLD_USB_ Transfer Params * p_ transfer data)
{
p_transfer data->num bytes = /* TODO: Set number of Bulk OUT bytes to transfer */
p_transfer data->p data buffer = /* TODO: address to store Bulk OUT data */

/* User Bulk transfer complete callback function. */

p_transfer data->fp callback.usb out transfer complete = user bulk out transfer done;

p_transfer params->fp transfer aborted callback = /* TODO: Set to User callback
function or CLD NULL */;

p_transfer params->transfer timeout ms = /* TODO: Set to desired timeout */;

/* TODO: Return how the Bulk OUT transfer should be handled (Accept, Pause,
Discard, or Stall */
}

/* The function below is an example if the bulk out transfer done callback specified
in the CLD USB Transfer Params structure. */
static CLD USB Data Received Return Type user_bulk out_transfer done (void)
{
/* TODO: Process the received Bulk OUT transfer and return if the received data is
good (CLD_USB_DATA GOOD) or if there is an error (CLD USB_DATA BAD STALL)*/

}
static void user_bulk_console_rx byte (unsigned char byte)
{

/* TODO: Add any User firmware to process data received by the CLD Console UART.*/
}

31

static void user bulk_usb_event (CLD USB_Event event)

{

}

switch (event)
{
case CLD USB CABLE CONNECTED:
/* TODO: Add any User firmware processed when a USB cable is connected. */
break;
case CLD USB CABLE DISCONNECTED:
/* TODO: Add any User firmware processed when a USB cable is
disconnected. */
break;
case CLD USB ENUMERATED CONFIGURED:
/* TODO: Add any User firmware processed when a Device has been
enumerated. */
break;
case CLD USB UN CONFIGURED:
/* TODO: Add any User firmware processed when a Device USB Configuration
is set to 0.*/
break;
case CLD USB BUS RESET:
/* TODO: Add any User firmware processed when a USB Bus Reset occurs. */
break;

/* The following function will transmit the specified memory using

the Bulk IN endpoint. */

static user_bulk transmit_bulk in data (void)

{

static CLD USB Transfer Params transfer params;

transfer params.num bytes = /* TODO: Set number of Bulk IN bytes */

transfer params.p data buffer = /* TODO: address Bulk IN data */

transfer params.callback.fp usb in transfer complete = /* TODO: Set to User
callback function or
CLD NULL */;

transfer params.callback.fp transfer aborted callback = /* TODO: Set to User
callback function or
CLD NULL */;

p_transfer params->transfer timeout ms = /* TODO: Set to desired timeout */;

if (cld bf70x_bulk lib transmit bulk_in data(&transfer params) ==
CLD USB_ TRANSMIT SUCCESSFUL)
{
/* Bulk IN transfer initiated successfully */

}

else /* Bulk IN transfer was unsuccessful */

{

}

32

	Disclaimer
	Introduction
	USB Background
	CLD BF70x Bulk Library USB Enumeration Flow Chart
	CLD BF70x Bulk Library Bulk OUT Flow Chart
	CLD BF70x Bulk Library Bulk IN Flow Chart

	Dependencies
	Memory Footprint
	CLD BF70x Bulk Library Scope and Intended Use
	CLD Bulk Loopback Example v1.2 Description
	CLD BF70x Bulk Library API
	cld_bf70x_bulk_lib_init
	Arguments
	Return Value
	Details

	cld_bf70x_bulk_lib_main
	Arguments
	Return Value
	Details

	cld_bf70x_bulk_lib_transmit_bulk_in_data
	Arguments
	Return Value
	Details

	cld_bf70x_bulk_lib_resume_paused_bulk_out_transfer
	Arguments
	Return Value
	Details

	cld_ lib_usb_connect
	Arguments
	Return Value
	Details

	cld_ lib_usb_disconnect
	Arguments
	Return Value
	Details

	cld_time_get
	Arguments
	Return Value
	Details

	cld_time_passed_ms
	Arguments
	Return Value
	Details

	cld_console
	Arguments
	Return Value
	Details

	Using the ADSP-BF707 Ez-Board
	Connections:
	Note about using UART0 and the FTDI USB to Serial Converter

	Adding the CLD BF70x Bulk Library to an Existing CrossCore Embedded Studio Project
	Using ADI hostapp.exe
	ADI hostapp Windows USB Driver Installation

	User Firmware Code Snippets
	main.c
	user_bulk.c

